2023
Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2023). Measures for explainable AI: Explanation goodness, user satisfaction, mental models, curiosity, trust, and human-ai performance. Frontiers in Computer Science, 5.
2022
Klein, G. A. (2022). Snapshots of the mind. The MIT Press.
2021
Hoffman, R., Klein, G., Mueller, S. T., Jalaeian, M., & Tate, C. (2021). The stakeholder playbook for explaining AI systems.
Hoffman, R., Mueller, S. T., Klein, G., & Litman, J. (2021). Measuring trust in the XAI context.
Klein, G., Hoffman, R., & Mueller, S. T. (2021). Scorecard for self-explaining capabilities of AI Systems.
Klein, G., Jalaeian, M., Hoffman, R., & Mueller, S. T. (2021). The plausibility gap: A model of sensemaking.
Klein, G., Hoffman, R., Mueller, S., & Newsome, E. (2021). Modeling the process by which people try to explain complex things to others. Journal of Cognitive Engineering and Decision Making, 15(4), 213–232.
Mueller, S., Hoffman, R., Klein, G., Mamun, T., & Jalaeian, M. (2021). Non-algorithms for Explainable Artificial Intelligence.
Mueller, S. T., Tan, Y.-Y., Linja, A., Klein, G., & Hoffman, R. (2021). Authoring guide for cognitive tutorials for artificial intelligence: Purposes and methods.
Mueller, S. T., Veinott, E. S., Hoffman, R. R., Klein, G., Alam, L., Mamun, T. I., & Clancey, W. (2021). Principles of Explanation in Human-AI Systems.
2019
Koschmann, T., Klein, G., Holyoak, K., & Kolodner, J. (1994). The Role of Cases in Learning. In A. Collins (Ed.), Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society (1st ed.). essay, Routledge.
Klein, G., Hoffman, R., & Mueller, S. (2019). Naturalistic Psychological Model of Explanatory Reasoning: How people explain things to others and to themselves.
Mueller, S. T., Hoffman, R., Clancey, W., Emry, A., & Klein, G. (2019). Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI.
2018
Hoffman, R. R., Klein, G., & Mueller, S. T. (2018). Explaining explanation for “explainable AI.” Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62(1), 197–201.
Hoffman, R., Mueller, S. T., Klein, G., & Litman, J. A. (2018). Metrics for Explainable AI: Challenges and Prospects.
Hoffman, R. R., Miller, T., Mueller, S. T., Klein, G., & Clancey, W. J. (2018). Explaining explanation, part 4: A deep dive on deep nets. IEEE Intelligent Systems, 33(3), 87–95.
Klein, D., Woods, D., Klein, G., & Perry, S. (2018). EBM: Rationalist fever dreams. Journal of Cognitive Engineering and Decision Making, 12(3), 227–230.
Klein, G. (2018). Explaining explanation, part 3: The causal landscape. IEEE Intelligent Systems, 33(2), 83–88.
Klein, G., Borders, J., Newsome, E., Militello, L., & Klein, H. A. (2018). Cognitive skills training: Lessons learned. Cognition, Technology & Work, 20(4), 681–687.
Klein, G., Shneiderman, B., Hoffman, R. R., & Wears, R. L. (2018). The “war” on expertise. The Oxford Handbook of Expertise, 1157–1192.
2017
Hoffman, R. R., & Klein, G. (2017). Explaining explanation, part 1: Theoretical foundations. IEEE Intelligent Systems, 32(3), 68–73.
Hoffman, R. R., Mueller, S. T., & Klein, G. (2017). Explaining explanation, part 2: Empirical foundations. IEEE Intelligent Systems, 32(4), 78–86.
Klein, G., Militello, L., Dominguez, C., Lintern, G., Smith, P. J., & Hoffman, R. R. (2017). A one-day workshop for teaching cognitive systems engineering skills. In Cognitive Systems Engineering (1st ed.). essay, CRC Press.
Klein, G. A. (2017). Sources of power: How people make decisions. The MIT Press.
Klein, G., Shneiderman, B., Hoffman, R. R., & Ford, K. M. (2017). Why expertise matters: A response to the challenges. IEEE Intelligent Systems, 32(6), 67–73.
Wears, R. L., & Klein, G. (2017). The rush from judgment. Annals of Emergency Medicine, 70(3), 345–347.